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The Unconditional Instability of Inflow-Dependent 
Boundary Conditions in Difference Approximations 

to Hyperbolic Systems 

By Eitan Tadmor* 

Abstract. It is well known that for a mixed initial-boundary hyberbolic system to be 
well-defined it is necessary to impose additional boundary conditions only on the inflow 
eigenspace of the problem. We prove the discrete analogue of the above concerning difference 
approximations to such a system; that is, imposing numerical boundary conditions which are 
at least zeroth-order accurate with an inflow part of the interior equations leads to uncondi- 
tional instability. 

1. Introduction. We consider the first-order hyperbolic system 

(1.la) auj =Pu+F, P=_Aa ? +E 

in the quarter plane x, t 0 0, subject to initial conditions 

(1.1b) u It=,, = f(x), x ,> O . 

Here u u(x, t) is the N-dimensional vector of unknowns; the N-dimensional 
coefficient matrices A _ A(x, t), E E(x, t) and inhomogenous vector functions 
F F(x, t) smoothly depend on (x, t), and by hyperbolicity we mean that A is 
similar to a real diagonal A 

(1.lc) TAT-' = A-diag(A-, A+) 

A-= diag(X-,,..,) < O < A+ --diag(X+1+ ,,N ) 

The principal part of system (1.1a)-rewritten in its characteristic form u8tl = 
Aa i/at + F, denoting multiplication by T on the left- asserts that the characteris- 
tic variables uI are uniquely determined along the curves x;-X_+ = 0. The last N - / 
of these characteristic curves carry N - / pieces of information-these are the 
outflow components u+_ (=(I? 1), , u(N))T impinging on the boundary x = 0 from 
the right. For system (1.1) to be uniquely solvable therefore, exactly / additional 
pieces of information must be provided at x = 0 

(1.2)B X= = G. ran B]=1 
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The requirement for the boundary conditions to be on top of the predetermined 

outflow components, can be expressed as follows (Hersh [71): 
Let 0- denote the negative eigenspace spanned by the eigenvectors {4} 1 

associated with the negative eigenvalues {f XJ7 . Then, for all nontrivial vectors 4r 

in D-, we must have 

(1.2b) B4-=# 0, 0 F-( G-. 

Condition (1.2b) merely says that, at the boundary x = 0, it is necessary to 

provide extra information for the inflow components i-_ W,),... I())T , in addi- 

tion to that governed in the interior by the differential system (1.1 a). In other words, 
if the boundary conditions (1.2a) are inflow-dependent in the sense that equality takes 
place in (1 .2b) for some nontrivial ?* in (-, 

(1.3) Bq9* x ol = ? : 4? (E Wi D? 

then the problem (1.1)-(1.2) is ill-posed. In the one-dimensional case, conditions 
(1.2a)-(1.2b) amount to the standard reflection u-= Bu+ + G, implying, in particu- 

lar, that the requirement (1.2b) is necessary as well as sufficient for the problem to 

be well-posed. In the multi-dimensional case to be discussed later, however, require- 

ment (1.2b) with appropriately defined F- serves only as a necessary condition for 

well-posedness (e.g. [11, Chapter 15]). 
In this paper we study difference approximations to system (1.1)-(1.2) consisting 

of an interior scheme 

(1.4a) [I+A9,x]V(t + At) =[I + AtPA\x]v(t) + A\tFAx\ 

together with boundary conditions 

(1.4b) [J3,,x]v(t + --t) =[Bx]v(t) + AtGAx 

In analogy with (1.3) we say that the boundary conditions (1.4b) are inflow-depen- 
dent if they are at least zeroth-order accurate with an inflow part of the system; that 

is, if for some nontrivial ?* in (D - we have 

(1.5) @A x - BAx]* = , O * - 

Our aim is to show that such inflow-dependent boundary conditions render the overall 

computation unstable-a discrete analogue of the above-mentioned ill-posedness 
occurring in the differential problem. 

We note that boundary conditions based on prescribing given data are not 

included in the above inflow-dependent class since such a recipe is not even 

zeroth-order accurate. 
The unconditional ill-posedness (*-* instability) in both the differential and 

differenced cases is of course due to the independence of the inflow boundary values 

on the interior equations. Unlike the differential problem however, the discrete 

symbol is lacking the homogeneity property which is the technical key for showing 

ill-posedness [7]. Yet, by consistency, one can focus his attention on the behavior of 

the difference symbol near the origin where it approximates the differential one. 

After setting the precise framework for our discussion in the next section, proof of 

the main result along these lines is carried out in Section 3. We conclude with 

examples and further clarifying remarks in Section 4. Finally, we note that the above 
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result, though its proof is formulated to keep the notations simple in the one-dimen- 
sional setup, is carried over, as will be later indicated, for the multi-dimensional 
problem as well. 

2. Statement of Main Result. We would like to solve (1.1)-(1.2) by difference 
approximations. In order to do so, we introduce a mesh size Ax > 0 and a time-step 
At > 0 such that X At/Ax = constant. Using the standard notation vp(t) 
v(vlAx, t), we approximate (1.1a) by a consistent solvable two-step interior scheme 
of the form 

p p 

(2.1a) e (&p(x,, Ax)v,+j(t + At) = Aj(x,, Ax)v,+j(t) + AtH,(t), 
j=-r j=-r 

v p r. 

Starting with the initial data 

(2. 1b) v,,(t = O) = f,,, v '> O , 

the scheme (2.1 a) augmented by solvable boundary conditions 

q q 

(2.1c) 2 6j,(X ,, Ax)vj(t + At) = Bjp(x,, Ax)vj(t) + AtH,(t), 
j=O j=O 

0=0,1,...,r-1 

is then used to advance in time. 
To guarantee the convergence of the discrete solution vp(t) to the exact one u(x, t) 

as the mesh being refined, Ax, At -O 0, we have to verify that the difference 
approximation (2.1) is stable [3]; that is, we want small perturbations of either the 
initial or the inhomogeneous data not to excite the principal part of our computa- 
tion, but rather to have only a small comparable effect. We refer the reader to [5] for 
the precise definitions of stability with respect to either the initial data [5, Definition 
3.1], or the inhomogeneous data [5, Definitions 3.2 and 3.3]. 

We start by making the natural 
Assumption ([5,Assumption 5.3]). The interior scheme (2.1a) is 12-stable when 

applied for the Cauchy problem -x < v < x.** 
Our task is, therefore, to determine whether the assumed interior stability is 

deteriorating due to the introduction of the boundary conditions (2.1c). We claim 
that this is indeed the situation for inflow-dependent boundary conditions, see (1.5). 
The main result of the paper thus reads 

THEOREM. If the boundary conditions (2. 1c) are inflow-dependent in the sense that for 
some nontrivial R * in the inflow (= negative) eigenspace F - we have 

q 

(2.2) ( [@iV(o,o) - Bj(O,O)]* = 0, V = 0, ,.. .,r -1, 
j=o 

then the overall approximation (2. 1) is unstable. 

**Hereafter 12 denotes the space of all grid functions (X,} satisfying " I X" 12 < oo, the summation 
being taken over all relevant grid points. 
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The above result is the exact discrete analogue of the ill-posedness inferred in the 
differential problem by (1.3). In the special case of horizontal boundary extrapola- 
tion, it was first stated by Kreiss [8] for the one-dimensional scalar problem and 
proved by Burns [1] for systems. The somewhat simpler extension given here treats 
general boundary conditions augmenting any two-leveled interior scheme. Further- 
more, we remove the scalar-like restriction imposed in [1, Assumption 3.2], requiring 

cP, AJ to be polynomials in A; so, by using standard reblocking and Fourier 
transforming of tangential derivatives, the above theorem is valid as well for 
multi-leveled schemes approximating the multi-dimensional problem. 

The proof of the theorem given in the next section, proceeds by showing step by 
step the unconditional instability with respect to each of the stability definitions 
[5, Definitions 3.1, 3.2 and 3.3]. In particular, we give an explicit estimate of the 
unstable growth of the discrete solution for dissipative schemes; more precisely, we 
show in such a case that if the inflow boundary conditions are s-order accurate, see 
(3.10), then after n time steps the 12-norm of the solution exceeds - n(s+I/2) take 
s = 0 to coincide with the 12-instability [5, Definition 3.1] stated in the main 
theorem. Such a weak polynomial instability is nevertheless rejected as being inap- 
propriate due to possible reflections at the other (right) boundary which may result 
into the untolerable exponential instability [ 1 1, Chapter 17]. 

We close this section with the following concrete example. Consider any standard 
5-point interior scheme approximating the linearized inviscid one-dimensional 
gasdynamics equations (low-order terms due to linearization are neglected) 

au +Aau _ F, xit>0; at ax 
here u = (p, U, p)T are the density velocity and pressure respectively, F, stands for 
the external forces and 

Us Ps ? 
A = [0 US I1/Ps] y = ratio of specific heats, 

? YPs Us 

with (p5 , p )T denoting the corresponding state we linearize about. We are 
interested in the subsonic inflow case, 0 < Us < cs, cs yp5/p5 where a two- 
dimensional inflow eigenspace is to be determined at (xl, t + At) and-in case 
exact inflow conditions are not known-at (x0, t + At) as well. According to the 
above theorem, any attempt to calculate the missing values using at least zeroth-order 
accurate conditions for either tl- = cp - p, U2 = pScSU + p, or any combination of 
them, will result in instability. In other words, the computation of these missing 
values requires additional information which is not to be extracted solely from the 
differential equations in the interior, (l. la). One possibility, of course, is to take into 
account the differential boundary conditions (1.2), if known. A general detailed 
procedure along these lines, to extract the additional information to any desired 
degree of accuracy, is described in [2]. 

3. Unconditional Instability. By the nature of our negative result, it is sufficient to 
restrict attention to the principal part of the approximation localized at x = 0. 
Indeed, by introducing appropriate boundary cut-off functions, one finds that it is 
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the constant coefficient cases 

i, = 96(O, O), AJ Aj(O, O), gJ -- i(O O), Bj, B ) 

which determine the stability properties overall. 
Let Xx stand for the constant coefficient evolution operator which represents 

advancing of one time-step with approximation (2. 1 a), (2. 1 c). Then, starting with the 
initial data f = { f^,})0, our approximate solution v = {v,}??=0 after n such time-steps 
is given by 

(3.1a) v(t = n - At) = xf. 

Employing the Cauchy integral representation, it can also be rewritten as 

(3.Ib) v^(t = n - At) = 2;i fznA(z) dz, v = 0, 1,... 

with the contour F enclosing the spectrum of Eax, and the vector grid function 

4(z) = {(4(z)})? 0 determined by the resolvent equation 

(3. 1c) [zI -ax] 0z) =f 4W^()}'- 0E 12(0 C)- 

We continue with the construction of a general solution for (3. lc), in the case of 
vanishing interior initial data, f,I = 0, e.g. [4, Section 5], [8, Section 2]. 

The evolution operator Cx appearing in the resolvent equation (3.1c) consists of 
two parts -corresponding to the basic scheme (2.1 a) we have in the interior 

p 

(3.2a) (ze- AJ)- Vj(z) = O, v = r, r + 1,... 

augmented at the boundary by, see (2. lc), 
q 

(3.2b) z - B1V)i1J(z) =f = v 0, 1,...,r -1. 
/ = 0 

Equation (3.2a) is an ordinary difference equation with constant matrix coefficients, 
whose most general 12-bounded solution is given by [ 12] 

(3.3) Zk(z) = X(z)Lk(z)a, k = 0,1,..., IzI> 1. 

Here L(z) is an Nr-dimensional matrix which consists of the power-bounded Jordan 
cells associated with the characteristic eigenvalue problem 

(3.4) Det[ (zci - Aj)Kj] = 0; 

the N X Nr rectangular matrix X(z) consists of Nr column vectors {4m(Z)}A JI 
which are the corresponding N-dimensional Jordan chains, and finally, a is an 
Nr-dimensional vector to be determined by the additional Nr boundary conditions 
(3.2b): inserting (3.3) into (3.2b) we end up with the system of Nr equations 

D(o](z) 

(3.5a) D(z)o = f, D(z) = D f = (fo" "fr-i) 
T 

D[r-1](Z) 
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where D[V](z) are the N X Nr-dimensional blocks 
q 

(3.5b) D[V](z) 2 (z 3^ - BJ) X(z)LJ(z), v = 0, 1, ... ,r-1. 
J=O 

The key of the instability proof ahead lies in studying the behavior of the solution 
for the resolvent equation, 4(z), in the neighborhood of z = 1 (or, as already has 
been mentioned as the same thing- the dual variables near the origin). We will show 
that our boundary conditions being inflow-dependent, (2.2), imply the singularity of 
the solution at z = 1, which in turn leads to unconditional instabilty. First, let us 
recall some further information about the solution A(z), just constructed in (3.3), to 
be used later on. 

Without loss of generality, the matrix L(z) in the neighborhood of z = 1 is of the 
form [5, Theorem 9.1] 

(3.6a) L(z) [L(Z) LO ] 

where the upper-left i-dimensional block, L_(z), represents those modes consistent 
with the inflow part of the differential equation [9, Lemma 7] 

(3.6b) L-(z) = I + [XA-]-'(Z- 1) + D(z - 1)2, 

while in the lower-right (Nr - /)-dimensional block, LO(z), we regroup the parasitic 
modes which eventually will be damped away from the boundary 

(3.6c) L*(z)LO(z) (1 -8) I, 8 > 0. 

Next, let X (z) denote the first I column vectors in X(z), m(z), m = 1, 2,... . 1, 

(3.7a) X(z) = [4X(z), XO(z)]. 

Inserting into (3.4) their corresponding eigenvalues from (3.6b), Km(Z)= 1 + 
(z z-1)/(XAA-m) + (Z( - 1)2 and using the consistency of the interior scheme which 
amounts to the standard 

p p 

[e [- AJ] = [ j(ej- Aj) + A6eJA] = O, 
j=-r j=-r 

we arrive at 

p 

(z - 1) * e C[I + ZX,A,A] Om(z) = (D(z - 1)2. 
j=-r 

By the solvability of the interior scheme 6ei1e'ij I0=o = lei is nonsingular; dividing 
by (z - 1) - lei we conclude 

(3.7b) X(z) = X(1) + ?(z - 1), 

where the I column vectors 4m(1), m = 1, 2,... , 1, which form X (1), coincide with the 
inflow eigenvectors 4m of A associated with its negative eigenvalues Am < 0. 

Proof of Main Theorem. We claim that the matrix D(z) in (3.5a) is singular at 
z = 1. Indeed, referring back to our inflow-dependence assumption, we recall the 
existence of 4-; in the inflow eigenspace I- satisfying (2.2); that is, 4-; belongs to the 
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range of X (1). Choose T to be the Nr-dimensional vector whose first I components 
-denoted here by T-are uniquely determined as the solution of 

(3.8a) X(l)X= +*, 

and its remaining Nr - I components are taken to be zero, 

(3.8b) T = (T-,ONrl,), T o#. 

Inserting this choice of T into (3.5b), one finds on account of (3.6a) and (3.7a) 
q 

(3.9a) [D(z)T][p] = 2 (zf - BJV)X(z)LJ(z)'r, 0 v r -1. 
/ =o 

Abbreviate the right-hand side of (3.9a) by R[VI(z). Making use of (3.6b) and (3.7b), 
then the inflow-dependence assumed in (2.2) implies for T chosen by (3.8a) 

q 

(3.9b) R[v](l) = 
- 

( Bjx(1) T- 

q 

/ =o 

Thus, according to the terminology of Theorem 5.1 in [5], it was shown that z = 1 is 
a generalized eigenvalue, and hence the approximation (2.1 a), (2.1 c) is unstable with 
respect to [5, Definition 3.3]. Furthermore, we note that the more accurate the 
boundary conditions are in the inflow direction 4;, say accurate of order s - 1 2 0, 

(3.10) IR(z)1= O(z - 1)s R _(RI[O] R[r- 1) 

the worse is the unstable (singular) behavior at z = 1, in agreement with [ 1, Section 
5], 

(3.11) Det[D(z)] = (z - 1), s2 1 

As shown by the counterexample in Section 4 below (see also [14, Section 5]), the 
existence of a (possibly generalized) eigenvalue on the unit circle does not necessarily 
imply instability with respect to either stability definitions 3.2 or 3.3 in [5]. We next 
turn to show, however, that the generalized eigenvalue z = 1 in our case will always 
induce instability with respect to both, the reason being that this generalized 
eigenvalue is originating from the inflow part of the problem. To see that, we use 
(3.10) to make a special choice of the initial data f = R/I RI,, =, for which the first I 
components of the a(z)-solution of (3.5a)-denoted here by a(z)-have a singu- 
larity of order s, I a(z) I (D(z - 1)-s. Then, upon employing the equivalent H-norm, 
11 I_ 12 =o(0 H.) with X*HX I, one finds on account of (3.3), (3.5a) and 
(3.6c) that 

00 

(3.12a) 114112 114'II2f > const Iz -1 -2s IL'(z)aI /la 12; 
V=0 

we use (3.6b) to sum the term on the right-hand side, yielding the following lower 
bound 

(3.12b) II'P112 > const -A . - A-l .Iz-1 V-(2s+ 1). 
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Estimate (3.12b) can be also read as 

(3.13) II(zI - EaXY11 > const/Iz -1 jIsl/2, s 1, 

which shows that the approximationfails to satisfy the resolvent estimate 

(3.14) II(zI - EaX) 11 < const/ (Iz I -1), 

namely, it is unstable with respect to [5, Definition 3.2].*** Furthermore, the weaker 

12-instability follows as well. For if not, the approximation being 12-stable [5, Defini- 
tion 3.1] is characterized by having ll <ii ? const which in turn leads to the 
contradiction that (3.14) holds for the geometric expansion of the resolvent 
(zI - X&). This completes the study of instability in the one-dimensional case. 

Finally we remark about the multi-dimensional problem, 

P _A a+ :: Aj + E, (X21 ... Xd) EE Wd 1 
ax j=2 Ix 

approximated by (2.1) with the multi-indexes v, j, r, p and q varying appropriately. 
Denoting the tangential fourier dual variables by (w2I ... ., d), the only point to note 
here is that, for I z - 11 + J=2 Ij I sufficiently small, the consistent normal block 
takes the form 

I1+ (AA)'. l ( -1) I+ i :: wA(5) [(z * 1+ 

by block diagonalization, its inflow (normal) part, L_ see (3.6), can be separated 
from its outflow one. Once instability for sufficiently small tangential dual variables 
is established in the normal direction, instability is inferred back in the physical 
space. Q.E.D. 

The rest of this section is concerned with an explicit estimate of the unstable 
growth indicated in the main theorem. We consider dissipative schemes, where we 
can restrict attention to the part of the discrete solution which corresponds to the 
resolvent A(z) integrated in the neighborhood of z = 1; see [9, Section 3]. Denoting 
that part by v- and appealing to the same configuration as in [9, Section 3], we have 
by (3.3) and (3.5a) 

(3.15a) V(t = n At) = 2i X(z)L(z)D (z)dz, 

where the contour "2 is given by 

(3.15b) F2 = lZ ||Z - 1 I= P,IZI> 1 - E; p < po, e = Epo)} 

To estimate v-(t) from below, we consider the previously chosen initial data 
f = R/I R IIK , for which the eigenprojection associated with z = 1 has a pole of 
order s, see (3.10), and hence is of order 

(3.16) l l znX(z)L (z) (z - )sa/IaIjdz '-n'1. 

***In fact even the weaker stability [4, Definition 2.3] does not hold, since-using the notation of 

[4, Lemma 9.4]-the necessary condition I D- 1 1 < const is violated. 
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When compared with (3.15), the last integral consists of integration of the resolvent 
along the extra path F3= {z Iz - 1I= p, lzl 1- - g}; by Lemma 7 in [9], we can 
use the expansion (3.6b) along that extra path of integration, yielding 

(3.17) 1 .ZX (z)L" (z) ((z - l)a /lol dz 

? const p-(s-l 

We note that by the finite speed of propagation, the last integral must cancel the 
source in (3.16) to at least exponentially small order, away from the boundary, 
v > (n + 1) r. Near the boundary, however, 0 < v < [0. n], for appropriately 
chosen fixed 0 and K large enough so that exp(KO/X I VI ) K -(s-I) is sufficiently 
small, we find, with p = K/n, that after n > K/po time-steps 

..dz - .. z_>cns 
s (3.18a) lv;(t n - t) I27J_= |: - gil 

so we finally conclude 

(3.18b) IIv(t)II > const [- E Iv (t)|i] > const [ t] s/2 s> 1. 

Thus, the discrete solution has a polynomial growth of order s - 1/2, at least, which 
indeed corresponds to the singularity of order s + 1/2 indicated in (3.13). 

4. Examples and Additional Remarks. To demonstrate the strict sense of the 
stability definition 3.3 in [5], we consider the following example. The outflow scalar 
equation (1.1a) is approximated by a 3-point interior dissipative scheme whose 
boundary values are computed by temporal extrapolation 

(4.1a) vo(t + At) = vo(t). 

The overall approximation is clearly unstable with respect to [5, Definition 3.3] since 
the boundary values {vo(t = n - t)})'0 are computed in such a way that they are 
not 12-integrable along the t-axis; indeed z = 1 is an eigenvalue in this case, since the 
boundary determinant-(see (3.8))-D(z) = z - 1 is vanishing at that point. Never- 
theless, the overall approximation is 12-stable [5, Definition 3.1] and convergent in 
this case, if we regard the computation of the boundary values as overspecification 

(4.1b) vo(t) = fog 

and apply [1O, Theorem 1] (see also [15] for the multi-dimensional outflow problem). 
We note that both the stability and in particular the convergence (compare [3, The- 
orem 2.2]) are valid here in spite of having z =1 as an eigenvalue, the reason being 
that the eigenvalue z = 1 is not originating from an inflow part of our outflow 
equation. That is, the power bounded Jordan cell L in (3.3) contains no inflow modes 
and satisfies I L(z = 1)1< 1, which implies the standard damping away from the 
boundary. 
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The above situation is in contrast to the undamped behavior in the inflow case 
where by (3.6a) L_(z = 1) = I: consider as an example the inflow scalar equation 
(1. 1 a) approximated by the dissipative Euler scheme 

(4.2a) v,(t + /t)- v(t) + Xa[v,(t)- v = 1,2,..., -1 <Xa<0, 

and augmented by linear horizontal extrapolation 

(4.2b) vo(t + /t) = v,(t + st). 

For vanishing interior initial data, f, = 0, one gets from (3. la) and (3.3) 

(4.3) v,(t = n -\t) =27i 

fzf 

l 

+)a 
-z 

Xa (l-z) fodz. 

The integral on the right consists of two contributions-the first is due to the 
undamped pole at z = 1, yielding 

I ... l- dz = fo 

at all grid points xi, which is cancelled out, as it should be, away from the boundary, 
by the other pole, 

I dz = -fo 27ri I-X-acl=8 

at xi,, v 2 n + 1. Thus, we are left with the "boundary layer", 

V,,(t =n - 
/)=[-2(k ) -k (a)*( + Xa) ]-f, O v n 

any fixed portion of which amounts to the power-growth _ (t/L t)I/2. 

For a completely similar situation we refer the reader to the discussion of entropy 
violation by nonmonotone schemes in [6, Section 3]. By considering a steady shock 
as an interior boundary, it was shown there that the linearized Lax-Wendroff scheme 
may exhibit instability, the reason being exactly the zeroth-order extrapolation of an 
inflow-like quantity which yields the weakly unstable growth of order ?jT7n(b)II 
const vFn ; see [6, Section 3]. 
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